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ABSTRACT
Federated learning provides the ability to learn over heterogeneous user data in a distributed manner while
preserving user privacy. However, its current client selection technique is a source of bias as it discriminates
against slow clients. For starters, it selects clients that satisfy certain network and system-specific criteria, thus not
selecting slow clients. Even when such clients are included in the training process, they either struggle with the
training or are dropped altogether for being too slow. Our proposed idea looks to find a sweet spot between fast
convergence and heterogeneity by looking at smart client selection and scheduling techniques.

1 BACKGROUND

The past decade has seen an explosion of data-driven and
machine learning-based applications that solve different
problems. This naturally leads to a lot of fruitful discussions
about ownership and access control of these data. Users are
concerned about the privacy of their sensitive data and do
not prefer sharing it with third-party organizations. How-
ever, diverse and heterogeneous training data is of great
importance to those models. Thus, recently we have seen
a lot of work on privacy-preserving designs of machine
learning models, popularly known as federated learning.

Federated learning is a privacy-preserving method of dis-
tributed learning over heterogeneous user data. Federated
learning follows the philosophy of ”bringing the code to
data, instead of bringing data to code” to address the above-
mentioned privacy concerns (Bonawitz et al., 2019; McMa-
han and Ramage, 2017). The architecture presented by
Bonawitz et. al. (Bonawitz et al., 2019) consists of a server
responsible for selecting client devices for training from a
pool of available devices in each round. The server main-
tains a copy of the global model, which is distributed to
selected client devices at the start of each round. Each client
trains the model with their local data and sends the gradients
back to the server. The server calculates the average gradi-
ent using the FedAvg algorithm after collecting gradients.
This average gradient is used to update the global model,
which is then distributed in the next round.

Since gradients can still reveal information about the data,
gradient updates sent by clients are preserved with secure
aggregation (Bonawitz et al., 2016) to enforce privacy fur-
ther. Secure aggregation prevents the server from learning
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individual clients’ gradients but learns the aggregate one
once responses from all clients are received. This couples
with the already synchronous nature of federated learning,
and makes the performance of training susceptible to degra-
dation due to stragglers. Thus, it is desirable from the angle
of performance that the selected devices are almost homoge-
neous with respect to the network and computation power.
However, mobile devices can have significantly different
network conditions(Chen et al., 2023) and compute capabil-
ity. Most of the current designs select clients randomly from
a pool of devices that satisfy certain criteria e.g. minimum 2
GB memory, unmetered network, etc (Bonawitz et al., 2019;
Li et al., 2020). This technique of client selection introduces
explicit bias in the system since factors like device memory
and quality of network are directly linked with socioeco-
nomic status (Abay et al., 2020; Kairouz et al., 2019; Li
et al., 2020). Thus, it’s critical to improve client selection
mechanisms to build models that are void of this explicit
bias.

2 RELATED WORK

A variety of solutions have been proposed for this problem,
ranging from model compression to different strategies of
client selection. Firstly, we discuss how existing work re-
duces the training time of slow clients, and still incorporates
them to mitigate bias. Then, we discuss current smart client
selection strategies.

2.1 Bias Mitigation Strategies

As we discussed, the existing design of federated learning
introduces explicit bias since parameters based on which
devices are selected are linked with socioeconomic fac-
tors(Abay et al., 2020; Kairouz et al., 2019; Li et al., 2020).
Bias can also come because of the non-IID distribution of
data. However, there are some techniques to circumvent it
since it’s a deep learning optimization problem(Zhao et al.,
2018; Li et al., 2018; Cho et al., 2020). To mitigate the ex-
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plicit bias discussed above, we need to include slow devices
in the training process. Clearly doing this comes at the cost
of slow convergence, owing to the slow clients straggling
the process. However, there has been some work on reduc-
ing computation and network costs for slow clients at the
expense of the accuracy of the model (Xu et al., 2019; Li
et al., 2018; Konečnỳ et al., 2016). For example Li et. al.
(Li et al., 2018) allows different devices to perform variable
amount of workload depending on their resources. Slow
clients can run fewer epochs or use lesser input data. Sim-
ilarly, Konečnỳ et. al. (Konečnỳ et al., 2016) compresses
model updates in a lossy fashion to reduce communication
costs at the expense of the accuracy of the sent parameters.
Abay et al(Abay et al., 2020) proposes a fairness-aware reg-
ularization in the loss function. However, we argue that such
techniques do not truly address the bias problem because
there is still discrimination in how slow clients are handled.
An ideal design should give equal opportunity for all clients
to contribute to the global model.

2.2 Clients Selection Strategies

It’s clear that the heterogeneous communication environ-
ments and computation resources at clients can hamper the
overall training speed. To accelerate the convergence speed
under this client heterogeneity, existing work has investi-
gated to make smarter decisions about client selection to
alleviate the communication overhead.

In the prevalent random client selection strategy, all clients
participate in the client selection phase in every round. The
server uniformly and randomly selects a subset of clients
from the pool(McMahan et al., 2017; Li et al., 2019; Ruan
et al., 2020) for training. The chosen clients do multiple
iterations of SGD on the local data, given the ML model
and the latest parameters from the server. Finally, the server
collects and aggregates the computed gradients to update
the global parameters. Li et. al. (Li et al., 2019) provides
a necessary convergence condition for federated learning
on non-iid data with partial client participation. Ruan et. al.
(Ruan et al., 2020) offer a selection scheme that converges
even when devices can flexibly join or leave the training.

Some recent work looks into client selection based on dif-
ferent criteria like the higher potential for global model
convergence or good network conditions. Cho et. al. (Cho
et al., 2020) reveal that a biased selection towards clients
with higher local loss can increase the speed of convergence.
This is because higher loss indicates a higher potential for
model improvement. The proposed POWER-OF-CHOICE
algorithm can yield up to 3X faster convergence and 10%
higher test accuracy compared with conventional federated
learning with random client selection. FedCS(Nishio and
Yonetani, 2019) requests the resource information, such as
wireless network bandwidth and compute capability, from

selected clients before the distribution of parameters of the
global model. It then only collects the gradients from clients
which can update and upload the parameters within a dead-
line. Although these biased client selection models can fa-
cilitate quicker convergence, it sacrifices the original benefit
of federated learning: the heterogeneity of data. TiFL(Chai
et al., 2020) is another recent work that explores tiering
together clients with similar training times and prioritizing
faster tiers to speed up training. It only temporarily priori-
tizes slower tiers when the accuracy of the global model is
poor during testing on devices from slower tiers. In contrast,
FedSS’s client selection does not lean toward any particular
cluster during training and offers equal opportunities for
every client to contribute to the training.

2.3 Training Policies

Recent work also shows that the straggler problem can be
eliminated by using asynchronous training policies. For
example, in FedAsync (Xie et al., 2019), the server does not
wait for all clients to send their model updates before per-
forming average. In fact, clients can request a central model
whenever they complete their local training. This speeds up
training but results in a higher degree of communication and
complications due to the staleness of the model (Dai et al.,
2018; Stripelis et al., 2022). Semi-synchronous training
(Stripelis et al., 2022) tries to find the best of both worlds. It
has a fixed point at which all clients must synchronize at the
central server but avoids idling by letting faster clients con-
tinue training. However, this is orthogonal to our clustering
strategy. Semi-synchronous training can still benefit from
our clustering by dividing clients into clusters and having
different synchronization deadlines for each cluster. Such
clustering will help reduce bias by minimizing extra training
that fast clients may do in any round.

3 MOTIVATION

As evidenced by the related work, federated learning be-
tween clients with heterogeneous data, devices, and net-
works can result in prolonged convergence time. Appro-
priate client selection decisions can result in quick conver-
gence. The convergence time is determined by two factors:
i) number of rounds until the model convergence condition
is reached and ii) time duration of each round. The number
of rounds can be reduced by selecting clients that add more
value to the learning e.g. high losses. Whereas the duration
of each round is determined by stragglers, thus selecting de-
vices based on hardware and network conditions can reduce
the convergence time.

To avoid the prolonged round duration time caused by
stragglers, we can select clients with similar training
times in each round. Meanwhile, we can randomly
choose clients with different network/computation condi-
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Figure 1. (a) The round time in the random selection scheme is determined by the straggler. (b) While the round time in FedCS is shortest,
client3 and client4 are always excluded because of their long training time and transmission delay. (c) Our scheme reaches the best
trade-off between training time and data heterogeneity.

tions across rounds to guarantee data heterogeneity. We
understand that slow clients might be in the minority in
some cases, where arranging separate rounds for them can
jeopardize their privacy. To ensure privacy for such rounds
we can fill up the round group with faster clients too. We
visualize and compare this strategy with random selection in
Bonawitz et, al. (Bonawitz et al., 2019) and FedCS (Nishio
and Yonetani, 2019) in Fig.1.

4 SYSTEM DESIGN

To reduce bias and also ensure faster model convergence,
we propose a smart approach of clients selection. We first
collect the device’s compute capability captured by FLOPS
(Floating point Operations per Second) along with network
conditions such as uplink and downlink bandwidth (Choi
et al., 1998) of every connected client.

Based on these collected parameters, we categorize clients
into different equal sized clusters. Each cluster comprises
clients with similar training time. We also determine optimal
number of clusters, k, for a given distribution. k is optimized
to minimize training time, while ensuring higher possible
degree of anonymity (high cluster sizes). In every round,
the FedSS server chooses a cluster in a round-robin way and
selects clients within it randomly to ensure equal opportunity
of every client.

There are two basic intuitions behind the approach. 1) Re-
duce bias due to barriers to entry for low bandwidth/ low-end
devices, which in turn minimizes socioeconomic bias. By
giving a fair chance to all the clients, the model gets a better
chance to learn from different data distributions. This also
prevents against content farm attacks using uncompromised
phones with high availability and bandwidth. 2) Have more
coordinated training rounds with similar performing clients
grouped together. We are less likely to run into a situation
where the overall completion time of a round is longer due
to a fraction of low-performing devices.

4.1 Dynamic Client Environment Tracking

From Fig.2, the steps in one training round of FedSS com-
prise: the smart clients’ selection, the distribution of models,
the parallel clients’ training procedure, the collection of up-
dated models, and the aggregation. Except for the first and
the last steps, the time it costs in all other steps is decided
by the clients’ environments. The network conditions, such
as bandwidth and propagation delay, determine the time
taken to distribute the model and collect gradients. Mean-
while, the client’s local compute capability, reflected by
available CPUs, GPUs, and memory, determines the time
taken to finish the training procedure. Therefore, FedSS
dynamically tracks and records those parameters of every
connected client, and predicts the approximate time it takes
to accomplish one round.

Let’s assume the model size is M , and the total number
of floating point operations in the model is Flops. Given
the measured network uplink bandwidth ULi, downlink
bandwidth DLi, client’s FLOPS rate FlopsRatei and the
number of samples at client Si for client ci, the overall
round time Ti for that client is:

Ti = M/ULi + Si · Flops/F lopsRatei +M/DLi

There are different faithful methods to measure network
bandwidth and FLOPS. Measuring bandwidth has been an
active research topic for a long time. There are active ways
to measure bandwidth such as speed tests and probe trains
(Choi et al., 1998). There are passive mechanisms as well
that estimate bandwidth based on network usage, e.g. client
hints (Google), CRAB (Tahir and Mittal, 2023). Similarly,
there are different benchmarks to measure FLOPS as a proxy
of compute capability e.g. Linpack (LINPACK) and HPL
(HPL - A Portable Implementation of the High-Performance
Linpack Benchmark for Distributed-Memory Computers).
Additionally, these estimates of compute capability can be
improved with real-time observations of the time taken to
run a training round. The mechanisms to track mentioned
metrics are not the contribution of our work, and we rely on
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Figure 2. The workflow to finish one round of synchronous train-
ing in FedSS. The bottleneck includes model distribution, model
collection, and parallel client training, which majorly depend on
the client’s compute capability and network conditions.

existing work for this.

4.2 Smart Client Selection

After getting the client round time estimate, Ti for most of
the clients, we are ready to run our clustering algorithm.
The clustering algorithm takes the number of clusters as
an input, and based on it, decides the percentiles of the
distribution. For example, if the number of clusters is 3, the
selected percentiles would be 25, 50, and 75. Clients are
sorted into these clusters based on their Ti’s mean-squared
distance from percentile values. Since the purpose of this
clustering is to group together clients with almost similar
training times, equidistant percentile-based centroids serve
this purpose reasonably well.

The clusters constructed this way tend to have an uneven
distribution of clients. The clusters with a shorter average
training time tend to have the most number of clients com-
pared to clusters with a higher average training time. This
means if we have a round-robin pattern of switching be-
tween clusters for each training round, the clients in larger
clusters have a smaller probability of selection. Our straw-
man solution to this problem was to construct a weighted
round-robin scheduling where the weight is based on the
cluster size. For example, assume the cluster sizes(out of
the total number) are 50%, 25%, and 25% for clusters A, B,
and C. The scheduling pattern would be (A, A, B, C), where
cluster A is selected for two rounds compared to the others.
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Avg. Round Time (s)
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Figure 3. Visualization of the process behind finding the optimal
number of clusters (6 in both cases). Also worth noticing is su-
perior efficiency of FedSS’s clustering algorithm compared to
KMeans.

However, we realize that having different-sized clusters
also means that clients have varying degrees of privacy.
Assuming a malicious federated averaging server, it is easier
to deanonymize a participating client in a smaller cluster
than a larger one. Thus, another goal of our clustering
algorithm is to build clusters of roughly the same size to
ensure that the clustering algorithm does not impart any
partiality when it comes to privacy.

We leverage a simple insight to even out clusters created by
our algorithm. As we observed that the slow client clusters
tend to have fewer clients. We pick the slowest clients from
the fast client cluster and migrate them to the slow cluster
until sizes are almost evened out. The inverse of this can also
be done if the fast client cluster is smaller, but we should
be careful so that shifting clients from a slower cluster does
not have a very drastic effect.

4.3 Optimal Number of Clusters

As we pointed out in 4.2, the standalone client selection
algorithm requires the number of clusters as an argument.
However, it can be difficult for the operator to know this.
Thus, we solve for the optimal value of it. Having fewer
clusters is desirable from the perspective of privacy, whereas
more clusters result in a shorter average round time. How-
ever, the average round time has diminishing returns as
we keep increasing the number of clusters. The optimal
number of clusters would be the point after which we see
diminishing improvement in the average round time.

Thus, to find the optimal number of clusters, we simulate the
training process given round-time estimates of clients with
different values of clusters. This gives us the average round
time for the given number of clusters. Then, we use Kneedle
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(Satopaa et al., 2011) to find the optimal point on the curve
of average round time vs. 1/cluster size. The Fig.3 shows
the curve between average round time and 1/cluster size
along with the knee point found by the Kneedle algorithm.

Fig.3 also compares the effectiveness of our algorithm as
compared to KMeans. This is the simulation of training
with 10000 clients and 1000 rounds of training. We also
compared it against DBScan and KDE clustering, which had
almost similar curve as KMeans. The reason our clustering
algorithm does better is that it is optimized to reduce round
time. Whereas Kmeans and other clustering algorithms are
specialized to just cluster data, these clusters may not be
optimal with respect to reducing round time. Moreover, it is
difficult for clustering algorithms to construct equal-sized
clusters.

4.4 Overhead

This grouping algorithm has a time complexity of NlogN ,
where N is the total number of client devices. Finding the
optimal number of clusters can be costly if the number of
clients is quite high. But this computation can be bounded
by limiting the maximum number of clusters to try. For
example, it is not desirable to have tens of clusters for only
100 clients. Moreover, the whole algorithm can be run in
parallel with model training and a new schedule can be
used from the next round onwards. Network conditions
as well as training time can vary over time depending on
factors like competing traffic, memory, or compute back
pressure. Therefore, it is desirable to run the grouping
algorithm periodically on updated estimates of Ti.

In our experimental implementation, we did not implement
mechanisms to measure bandwidth and profile FLOPS be-
cause our experiments are simulation-based. However, ex-
isting mechanisms to do so are very lightweight and do not
have significant overhead. Similarly, the profiling of FLOPS
can be done by measuring the time to train a round.

5 IMPLEMENTATION

Based on an open-source federated learning benchmark sys-
tem leaf(Caldas et al., 2018), we implemented FedSS by
writing a RPC-based communication protocol and schedul-
ing logic. We emulate the real federated learning by doing
distributed computations in multiple processes on a single
machine.

Fig.4 illustrates the communication protocol in detail. The
coordinator thread in the server asynchronously sends RPC
commands to K selected clients for training with its lo-
cal data, while the server thread keeps listening to clients’
requests to upload the updated models. After the client
finishes training, the server thread receives results and in-
crements a shared variable acked by one. The coordinator

Coordinator
Thread

RPC(“train”, models)

Keep 
listening

RPC(“update”, models)

Training

Ack += 1

Server Clients

Server
Thread

Client
Thread

Figure 4. The RPC-based communication protocol

thread waits until acked equals K to continue the aggrega-
tion step and finish this round.

To simulate the variable network, we use Internet Speeds
Data from World Population Review (World Population
Review). We also simulated the computation time needed
for training based on the benchmarked FLOPS (iconcharts)
of the top 20 most sold mobile phones in 2020 (Yordan,
2020).

6 EVALUATION

We evaluate FedSS against our implementation of FedCS
and random client selection. We train a CNN model on the
Femnist dataset, which is distributed in a Non-IID manner
across 20 clients. Initially, we aimed to run our experiments
with a much larger number of clients, but it’s not possible
to run so many instances of concurrent CNN models with
our limited computation resources. For FedSS and random
client selection, we set the number of clients per round to
5. For FedCS, we select 8 clients per round but aggregate
updates with the first 5 responses. To cover system and net-
work heterogeneity, we simulate random delays for different
clients. However, to ensure fairness between our system
and benchmarks, the same delay configurations are used
for clients across all our experiments. Similarly, the same
distribution of datasets between clients is used across our
experiments.

We explored different metrics to evaluate our system. Since
our trade-off is between training time and bias, we primarily
focus on metrics to capture these two.
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Figure 5. The total time taken by FedSS, FedCS and Random Se-
lection to train 2800 rounds.

Figure 6. CDF of time taken per round for FedSS, FedCS and
Random Selection.

6.1 Training Time

Measuring training time is easy, we can individually mea-
sure the time taken to complete one round of training at
the server. This time would include time taken to send the
model to all clients concurrently, and time taken by the
clients to train and send back the gradients. This process is
bottlenecked by the slowest client accepted by the server for
aggregation. Thus, time per each round is measured by the
time taken by the slowest client to receive, train and send
back the model.

Fig.5 shows the total time taken by FedSS and benchmarks
to run 2800 rounds of training. FedCS beats our system
by approximately 26% because it only waits for the fastest
clients to send back the gradients in every round. On the
other hand, Random Selection has the longest training time,
since the time taken per round, in this case, is straggled by

Figure 7. The average accuracy of the global model for FedSS,
FedCS and Random Selection.

the slowest client. FedSS achieves 1.6× shorter training
time than Random Selection. This improvement is possible
because of the optimal client clustering according to the
training time.

It seems that the training time of all systems is linear to
the number of rounds in Fig.5. This is due to too many
data points and doesn’t indicate that the training time of
every round is similar. Fig.6 shows the CDF of training
time per round for all systems. Steps in the line for FedSS
show different training times for different clusters (3 clusters
in this particular case). FedSS, which selects clients with
similar training time together, is able to finish 80% of the
rounds faster than Random and save around 40 hours.

6.2 Bias

Before measuring bias, let’s take a look at the performance
of the global model after 2800 rounds for each of the selec-
tion strategies. There are many well-established evaluation
metrics for classification models including precision, re-
call, accuracy, F1-score, etc. For our evaluation, we select
accuracy and F1-score as the metrics.

6.2.1 Accuracy

Accuracy is the metric to determine the correct prediction
ratio for the given dataset. It is calculated as :

TP + TN

TP + TN + FP + FN

Fig.7 & 8 respectively show the average accuracy and loss
of the global model across all clients. From the first look, it
seems as if all the strategies have similar performance with
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Figure 8. The average loss of the global model for FedSS, FedCS
and Random Selection.

respect to model validity. However, a deeper look at the
model’s metrics shows a clearer picture.

Table1 shows the breakdown of the accuracy of the model
across different kinds of clients. We notice that while FedCS
has an average accuracy as good as Random Selection and
FedSS, it has lower accuracy for slower clients. On the other
hand, its accuracy for faster clients is similar to both Ran-
dom Selection and FedSS. This difference in performance
on slow clients captures the bias in FedCS’s client selec-
tion strategy. Fast clients end up getting a lot more training
opportunities than slow clients.

The 1.5% accuracy difference between FedSS and Random
Selection, although negligible, can be explained from a data
heterogeneity point of view. Recall that Random Selection
by design does not have any explicit bias due to device
heterogeneity. This is because Random Selection selects
clients randomly and then waits for all of them to respond
before aggregating. Thus, the 1% difference in its accuracy
when compared to faster vs slower clients, can solely be
attributed to data heterogeneity. The fact that FedSS does as
good as Random Selection while reducing the training time
by a huge margin shows promise that FedSS can reduce bias
and amortize the cost of slow nodes.

6.2.2 F1 Score

F1-score is a metric to determine model performance by
using both, precision and recall values. Precision is the
metric to determine the percentage of correct results out of
all the results for a given class. It is given as :

TP/(TP + FP )

Figure 9. The average F1 score of the global model for FedSS,
FedCS and Random Selection.

Recall is the metric to determine the percentage of correct
results out of all the true results for a given class. It is given
as :

TP/(TP + FN)

F1 score, also known as the balanced F score, is the har-
monic mean of precision and recall.

2 ∗ precision ∗ recall
precision+ recall

For a multi-class classification, the F1 score is given as the
average of the F1 score of each class based on averaging
scheme. For our experiments, we have selected weighted
averaging to deal with class imbalance issues due to the
non-iid distribution of data across multiple clients.

Table2 shows the breakdown of the F1-score for the slowest
and the fastest clients trained in our experiment. The results
are consistent with the accuracy scores. FedSS achieves
results similar to FedCS for the fastest clients and improves
the results by 16% for the slowest clients as compared to
FedCS. Similar to accuracy, the results from FedSS match
Random Selection while taking considerably less amount
of time to train.

7 FUTURE WORK

We discuss the limitations of FedSS and the future work
in this section. While FedSS achieves the best trade-off
between training time and data heterogeneity in our testbed,
we have some restrictions in experiments that need more
work and real-world experimentation.

Experimental Setup: Currently, we are bound to work
on our local setup, which restricts us to be able to run ex-
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Accuracy for 4 Slowest Clients Accuracy for 4 Fastest Clients

Client FedCS
Random
Selection FedSS Client FedCS

Random
Selection FedSS

1 68.76 80.12 79.81 1 83.28 85.92 86.80
2 72.34 76.17 76.59 2 55.97 55.97 60.37
3 56.68 67.51 71.33 3 80.07 76.56 78.90
4 67.32 71.25 70.86 4 84.88 79.42 78.13

Average 66.27 73.76 74.65 Average 76.05 74.47 76.05

Table 1. A breakdown of the accuracy of the model across 4 slowest and 4 fastest clients for each of the selection strategies.

F1 score for 4 Slowest Clients F1 score for 4 Fastest Clients

Client FedCS
Random
Selection FedSS Client FedCS

Random
Selection FedSS

1 67.10 78.08 77.22 1 81.48 83.72 84.45
2 69.00 72.58 73.51 2 56.34 56.86 60.85
3 54.04 66.32 69.97 3 77.50 73.60 75.64
4 62.28 68.02 67.69 4 85.13 79.39 78.14

Average 62.60 71.25 72.09 Average 75.11 73.39 74.77

Table 2. A breakdown of F1 score of model across 4 slowest and 4 fastest clients for each of the selection strategies.

periments with only 20 clients. Running with more clients
results in severe resource congestion(GPUs and memory).
We expect better performance with more clients with our
smart clustering and selection. Also, it would be really
valuable to be able to run our setup with some real devices,
along with implementations to track the client environment.

Handling Churn: Currently FedSS assumes that all clients
join in the beginning and maintain available during the
whole training procedure, which may not be true in real-
world federated learning. Recalling that it takes a few rounds
for FedSS to measure and profile the new client’s network
condition and compute capability, it can be hard for FedSS
to track this information accurately in the scenario where
clients join and leave frequently.

To mitigate the possible performance degradation due to the
measurement and profiling delay of newly connected clients,
we propose to collect the hardware specifications of clients,
such as processor types and memory size, to initialize the
grouping based on some regression models. The rationale
behind it is that clients with similar hardware should have
similar computation capability under most circumstances
(unless many other background tasks compete for resources).
Whenever a new client joins, FedSS takes one RTT to collect
this information and determine its initial group based on the
model, which is still better than random initialization.

Data Heterogeneity: FedSS treats all clients equally in
every selection, which may not be the optimal solution. Al-
though the selection is unbiased, the data heterogeneity itself
among clients is another important source of bias(Kairouz
et al., 2019; Zhao et al., 2018; Jeong et al., 2018). If a subset

of clients with similar kinds of data is picked most of the
time, the model will converge faster but can have a severe
bias to the data distribution of that subset and may not be
able to capture the true global data distribution.

To overcome this issue, we want to explore the possibility
to introduce the training loss of individual clients into the
client selection process. Specifically in every round, if the
training loss for a particular client is non-significant, we
exclude it from selection for the next few rounds. This will
improve the probability of other clients contributing towards
the global model and also prevent model askew.

Scalability and Fault-tolerance FedSS applies only one
server in the system, which induces a communication bot-
tleneck and a single point of failure. We plan to leverage
locality-aware multi-server architecture to enhance scala-
bility, fault-tolerance, and even training performance in the
future.

Firstly, a locality-aware server tends to schedule and dissem-
inate its model to local clients with better network service,
which alleviates the communication bottleneck on the server
side and reduces the ratio of stragglers resulting from the
network. Secondly, multiple servers can apply a consen-
sus algorithm to replicate the training state of each other to
tolerate failure. Lastly, for geographically distributed appli-
cations such as next work prediction(Hard et al., 2018) and
geo-local language translation(Nord, 2005), a locality-aware
server can capture and preserve those geo-local characteris-
tics better.
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8 CONCLUSION

Federated learning due to its distributed nature of training
machine learning model suffers from the issues of data and
device heterogeneity. When we talk about device hetero-
geneity, there exists a trade-off between short training time
and bias, as existing schemes end up dropping slower clients.
We show this trade-off by comparing existing mechanisms
of client selection. We then argue that to eliminate bias, it is
necessary to make slow clients part of training. We present
FedSS which finds a sweet spot between short training time
and handling device heterogeneity by performing a smart
selection of clients.
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